For the production of highly concentrated bioethanol by pervaporation using an ethanol-permselective silicalite membrane, pervaporation performance was investigated using a silicalite membrane entirely covered with a silicone rubber sheet to prevent direct contact with acidic compounds. By using a resistance model for membrane permeation, the separation factor of the covered silicalite membrane towards ethanol can be estimated from the individual pervaporation performances of the silicalite membrane and the silicone rubber sheet. No decrease in the ethanol concentration through the silicone rubber sheet-covered membrane was caused when ethanol solutions containing succinic acid were supplied. By directly passing the permeate-enriched ethanol vapor mixed with water vapor through a dehydration column packed with a molecular sieve of pore size 0.3 nm, highly concentrated bioethanol up to 97% (w/w), greater than the azeotropic point in the ethanol/water binary systems, can be obtained from 9% (w/w) fermentation broth. (C) 2004 Society of Chemical Industry.