論文

基本情報

氏名 井上 仁
氏名(カナ) イノウエ ヒトシ
氏名(英語) INOUE HITOSHI
所属 中村学園大学 流通科学部 流通科学科
職名 教授

題名

Learning Analytics through a Topological Data Analysis Approach.

単著・共著の別

その他(発表学会等)

著者

Hitoshi Inoue ,  Koichi Yasutake ,  Osamu Yamakawa ,  Takahiro Tagawa ,  Takahiro Sumiya , Kiyomi Okamoto

担当区分

概要

Target data for learning analysis covers a wide range of data, including learning status recorded in the learning management system, scores for quizzes and assignments, final grades, and behavior in the network. When the data is large and complex, it may be challenging to analyze and extract essential information. For example, it is only realistic to display data in up to three dimensions in visualization. In the case of principal component analysis, multidimensional data must be reduced to lower dimensions. This study views the data as a topology to solve this problem That is, we apply topological data analysis, which treats the shape of the data algebraically. The reason is that if the data is quantified and proximity between information can be defined abstractly, analysis is possible within the same framework. This study attempts to apply topological data analysis as a new method of learning analysis. We analyzed persistent homology in an open educational dataset and examined the characteristics of data classified by grade. The results suggest that the high and low grade groups have the same topological structure, whereas the middle-level group has a different topological structure.

発表雑誌等の名称

Proceedings of EdMedia + Innovate Learning (pp. 445-450). Vienna, Austria: Association for the Advancement of Computing in Education (AACE).

出版者

Association for the Advancement of Computing in Education (AACE), Waynesville, NC

開始ページ

445

終了ページ

450

発行又は発表の年月

2023/07

査読の有無

無し

招待の有無

無し

記述言語

英語

掲載種別

研究論文(国際会議プロシーディングス)

国際・国内誌

国際誌

国際共著

国際共著していない

ISSN

978-1-939797-71-1

eISSN

DOI

Cinii Articles ID

Cinii Books ID

Pubmed ID

PubMed Central 記事ID

形式

URL

無償ダウンロード

無償ダウンロード不可

JGlobalID

arXiv ID

ORCIDのPut Code

DBLP ID